12 research outputs found

    Safe, Remote-Access Swarm Robotics Research on the Robotarium

    Get PDF
    This paper describes the development of the Robotarium -- a remotely accessible, multi-robot research facility. The impetus behind the Robotarium is that multi-robot testbeds constitute an integral and essential part of the multi-agent research cycle, yet they are expensive, complex, and time-consuming to develop, operate, and maintain. These resource constraints, in turn, limit access for large groups of researchers and students, which is what the Robotarium is remedying by providing users with remote access to a state-of-the-art multi-robot test facility. This paper details the design and operation of the Robotarium as well as connects these to the particular considerations one must take when making complex hardware remotely accessible. In particular, safety must be built in already at the design phase without overly constraining which coordinated control programs the users can upload and execute, which calls for minimally invasive safety routines with provable performance guarantees.Comment: 13 pages, 7 figures, 3 code samples, 72 reference

    The Robotarium: A remotely accessible swarm robotics research testbed

    Get PDF
    This paper describes the Robotarium - a remotely accessible, multi-robot research facility. The impetus behind the Robotarium is that multi-robot testbeds constitute an integral and essential part of the multi-robot research cycle, yet they are expensive, complex, and time-consuming to develop, operate, and maintain. These resource constraints, in turn, limit access for large groups of researchers and students, which is what the Robotarium is remedying by providing users with remote access to a state-of-the-art multi-robot test facility. This paper details the design and operation of the Robotarium and discusses the considerations one must take when making complex hardware remotely accessible. In particular, safety must be built into the system already at the design phase without overly constraining what coordinated control programs users can upload and execute, which calls for minimally invasive safety routines with provable performance guarantees

    The Robotarium: A remotely accessible swarm robotics research testbed

    Get PDF
    This paper describes the Robotarium - a remotely accessible, multi-robot research facility. The impetus behind the Robotarium is that multi-robot testbeds constitute an integral and essential part of the multi-robot research cycle, yet they are expensive, complex, and time-consuming to develop, operate, and maintain. These resource constraints, in turn, limit access for large groups of researchers and students, which is what the Robotarium is remedying by providing users with remote access to a state-of-the-art multi-robot test facility. This paper details the design and operation of the Robotarium and discusses the considerations one must take when making complex hardware remotely accessible. In particular, safety must be built into the system already at the design phase without overly constraining what coordinated control programs users can upload and execute, which calls for minimally invasive safety routines with provable performance guarantees

    Safe, Remote-Access Swarm Robotics Research on the Robotarium

    Get PDF
    This paper describes the development of the Robotarium -- a remotely accessible, multi-robot research facility. The impetus behind the Robotarium is that multi-robot testbeds constitute an integral and essential part of the multi-agent research cycle, yet they are expensive, complex, and time-consuming to develop, operate, and maintain. These resource constraints, in turn, limit access for large groups of researchers and students, which is what the Robotarium is remedying by providing users with remote access to a state-of-the-art multi-robot test facility. This paper details the design and operation of the Robotarium as well as connects these to the particular considerations one must take when making complex hardware remotely accessible. In particular, safety must be built in already at the design phase without overly constraining which coordinated control programs the users can upload and execute, which calls for minimally invasive safety routines with provable performance guarantees

    Specification composition and controller synthesis for robotic systems

    Get PDF
    From precision agriculture to autonomous-transportation systems, robotic systems have been proposed to accomplish a number of tasks. However, these systems typically require satisfaction of multiple constraints, such as safety or connectivity maintenance, while completing their primary objectives. The objective of this thesis is to endow robotic systems with a Boolean-composition and controller-synthesis framework for specifications of objectives and constraints. Barrier functions represent one method to enforce such constraints via forward set invariance, and Lyapunov functions offer a similar guarantee for set stability. This thesis focuses on building a system of Boolean logic for barrier and Lyapunov functions by using min and max operators. As these objects inherently introduce nonsmoothness, this thesis extends the theory on barrier functions to nonsmooth barrier functions and, subsequently, to controlled systems via control nonsmooth barrier functions. However, synthesizing controllers with respect to a nonsmooth function may create discontinuities; as such, this thesis develops a controller-synthesis framework that, despite creating discontinuities, still produces valid controllers (i.e., ones that satisfy the objectives and constraints). These developments have been successfully applied to a variety of robotic systems, including remotely accessible testbeds, autonomous-transportation scenarios, and leader-follower systems.Ph.D
    corecore